라즈베리파이에서 IRQ 스레드 생성 과정 디버깅하기

이번 절에선 request_threaded_irq() 함수를 호출하면 결국 kthread_create() 함수를 실행해서 IRQ 스레드를 생성하는 과정까지 짚어 봤습니다. 이제 디버깅 과정을 통해 배운 내용을 다지는 시간을 갖겠습니다.

먼저 디버깅을 위한 패치 코드를 소개합니다.

 

+기호로 볼드체로 된 부분이 추가할 코드입니다.
패치 코드를 입력할 함수는 __kthread_create_on_node() 입니다. 이전 절에서 분석하지 않은 __kthread_create_on_node() 함수에 IRQ 스레드를 생성하는 코드를 작성한 이유는 무엇일까요?

그 이유을 알게 위해서 다음 setup_irq_thread() 함수 코드를 살펴볼 필요가 있습니다.
1 static int
2 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
3 {
...
4 if (!secondary) {
4 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
5    new->name);

4 번째 줄 코드와 같이 set_up_irqthread() 함수에서 kthread_create() 함수를 호출하면 IRQ 스레드를 생성한다고 알고 있습니다. kthread_create() 함수 구현부 코드를 보면 kthread_create_on_node() 함수를 바로 호출하고 이어서 __kthread_create_on_node() 함수를 호출합니다. 그래서 __kthread_create_on_node() 함수에 디버깅 코드를 작성한 것입니다. 

다음 코드에서 볼드체로 된 부분을 눈여겨봅시다.
1 #define kthread_create(threadfn, data, namefmt, arg...) \
2 kthread_create_on_node(threadfn, data, NUMA_NO_NODE, namefmt, ##arg)
3
4 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
5    void *data, int node,
6    const char namefmt[],
7    ...)
8 {
9 struct task_struct *task;
10  va_list args;
11
12 va_start(args, namefmt);
13 task = __kthread_create_on_node(threadfn, data, node, namefmt, args);

우리는 kthread_create() 함수를 호출하면 커널 쓰레드를 생성한다고 알고 있습니다. kthread_create() 함수를 보면 2 번째 줄 코드와 같이 kthread_create_on_node() 함수로 치환됩니다. 

이어서 kthread_create_on_node() 함수를 열어보면 13 번째 줄 코드와 같이  __kthread_create_on_node() 함수를 호출합니다.

__kthread_create_on_node() 함수에 디버깅 코드를 작성한 이유를 살펴봤습니다. 이제 패치 코드를 분석할 차례입니다. 

먼저 수정한 4번째 줄 코드부터 분석합니다.
struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
    void *data, int node,
    const char namefmt[],
    va_list args)
4 +
5 + int irq_thread_enable = !strncmp(namefmt, "irq", 3); 
6 +      char *process_name = &namefmt[0];

__kthread_create_on_node() 함수로 전달되는 namefmt란 파라미터를 “irq” 문자열과 비교합니다. Strncmp() 함수는 지정한 문자열 개수만큼만 스트링을 비교하는 라이브러리 함수입니다. 이때 namefmt 변수 첫 번째 주소 기준으로 세 개 스트링이 “irq” 이면 irq_thread_enable 변수를 1로 설정합니다. 

IRQ 스레드 이름은 setup_irq_thread() 함수에서 "irq/%d-%s" 인자로 kthread_create() 함수를 호출할 때 지정한다고 알고 있습니다. 

다음 5번째 줄 코드를 보겠습니다. 
setup_irq_thread() 함수에서 지정한 "irq/%d-%s" 가 __kthread_create_on_node() 함수의 namefmt 인자로 전달됩니다. 그래서 이 앞 세 개의 스트링이 “irq”인지 비교하는 코드를 작성한 것입니다.  
1 static int
2 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
3 {
...
4 if (!secondary) {
5 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,  // <<-[1]
6    new->name);

다음 디버깅 정보를 출력하는 13번째 줄 코드를 볼 차례입니다.
13+    if (irq_thread_enable) {
14+        void *irq_threadfn = (void*)threadfn;
15+        
16+        printk("[+] irq_thread handler: %pS caller:(%pS) \n", 
17+ irq_threadfn, (void *)__builtin_return_address(0)); 
18+        dump_stack();
19+ }

13~19번째 줄 코드는irq_thread_enable 지역변수가 1이면 실행합니다.
irq_thread_enable 변수가 1이면 무엇을 의미할까요? 쓰레드 이름이 “irq”로 시작하니 IRQ 스레드를 생성하는 조건입니다. 14번째 줄 코드에서 IRQ 스레드 핸들 함수 포인터를 저장하고 있는 threadfn을 irq_threadfn  포인터에 캐스팅합니다. threadfn인자는 irq_thread() 함수 주소를 저장하고 있습니다. 

16번째 줄 코드는 IRQ 스레드 핸들 함수와 자신을 호출한 함수 정보를 출력합니다. 
16+        printk("[+] irq_thread handler: %pS caller:(%pS) \n", 
17+ irq_threadfn, (void *)__builtin_return_address(0));

이어서 18번째 줄 코드는 콜스택을 출력하는 dump_stack 함수를 호출합니다.
18+        dump_stack();

이렇게 코드를 입력하고 커널 빌드를 완료한 후 라즈베리파이에 커널 이미지를 설치합니다.
이후 라즈베리파이를 리부팅 시키고 커널 로그(/var/log/kern.log)을 열어봅시다.

이번에는 패치 코드가 실행하면서 출력한 커널 로그를 분석하겠습니다. 분석할 전체 로그는 다음과 같습니다.
1  [0.722882] mmc-bcm2835 3f300000.mmc: mmc_debug:0 mmc_debug2:0
2  [0.722892] mmc-bcm2835 3f300000.mmc: DMA channel allocated
3  [0.722933] [+] process_name: irq/%d-%s caller:(kthread_create_on_node+0x30/0x38) 
4  [0.722947] [+] irq_thread handler: irq_thread+0x0/0x20c
 caller:(kthread_create_on_node+0x30/0x38) 
5  [0.722958] CPU: 0 PID: 31 Comm: kworker/0:1 Not tainted 4.14.39-v7+ #15
6  [0.722962] Hardware name: BCM2835
7  [0.722980] Workqueue: events deferred_probe_work_func
8  [0.723006] (unwind_backtrace) from [<8010c21c>] (show_stack+0x20/0x24)
9  [0.723022] (show_stack) from (dump_stack+0xc8/0x10c)
10 [0.723039] (dump_stack) from (__kthread_create_on_node+0x1c4/0x1e0)
11 [0.723055] (__kthread_create_on_node) from (kthread_create_on_node+0x30/0x38)
12 [0.723070] (kthread_create_on_node) from (setup_irq_thread+0x54/0xe4)
13 [0.723086] (setup_irq_thread) from (__setup_irq+0x260/0x730)
14 [0.723101] (__setup_irq) from (request_threaded_irq+0xec/0x160)
15 [0.723118] (request_threaded_irq) from (devm_request_threaded_irq+0x78/0xcc)
16 [0.723140] (devm_request_threaded_irq) from (bcm2835_mmc_probe+0x514/0x644)
17 [0.723159] (bcm2835_mmc_probe) from (platform_drv_probe+0x60/0xc0)
18 [0.723176] (platform_drv_probe) from (driver_probe_device+0x244/0x2f8)
19 [0.723193] (driver_probe_device) from (__device_attach_driver+0xa8/0xdc)
20 [0.723210] (__device_attach_driver) from (bus_for_each_drv+0x70/0xa4)
21 [0.723228] (bus_for_each_drv) from (__device_attach+0xc0/0x124)
22 [0.723245] (__device_attach) from (device_initial_probe+0x1c/0x20)
23 [0.723261] (device_initial_probe) from (bus_probe_device+0x94/0x9c)
24 [0.723278] (bus_probe_device) from (deferred_probe_work_func+0x68/0x150)
25 [0.723296] (deferred_probe_work_func) from (process_one_work+0x224/0x518)
26 [0.723317] (process_one_work) from (worker_thread+0x60/0x5f0)
27 [0.723333] (worker_thread) from (kthread+0x144/0x174)
28 [0.723348] (kthread) from (ret_from_fork+0x14/0x28)

먼저 커널 쓰레드 이름과 쓰레드 핸들 함수를 분석해 봅시다.
3  [0.722933] [+] process_name: irq/%d-%s caller:(kthread_create_on_node+0x30/0x38) 
4  [0.722947] [+] irq_thread handler: irq_thread+0x0/0x20c
 caller:(kthread_create_on_node+0x30/0x38) 

쓰레드 이름은 irq/%d-%s 이고 자신을 호출한 함수가 kthread_create_on_node+0x30입니다. 
또한 IRQ 스레드 핸들 함수는 irq_thread()란 정보를 알 수 있습니다.

다음 5~6 번째 줄 로그입니다.
5  [0.722958] CPU: 0 PID: 31 Comm: kworker/0:1 Not tainted 4.14.39-v7+ #15
6  [0.722962] Hardware name: BCM2835

이 함수가 어느 프로세스에서 실행됐는지 알려주는 로그입니다. PID가 31인 kworker/0:1란 워커쓰레드가 CPU0에서 수행됐음을 알 수 있습니다.

이번에는 콜스택을 살펴보겠습니다.
platform_drv_probe() 함수에서 bcm2835_mmc_probe() 함수를 호출하고 있습니다. 이 정보로 부팅 과정에 IRQ 스레드를 생성한다는 사실을 알 수 있습니다. 보통 드라이버에서 짠 코드의 함수 이름에 probe가 보이면 부팅 도중 한 번 실행합니다.
11 [0.723055] (__kthread_create_on_node) from (kthread_create_on_node+0x30/0x38)
12 [0.723070] (kthread_create_on_node) from (setup_irq_thread+0x54/0xe4)
13 [0.723086] (setup_irq_thread) from (__setup_irq+0x260/0x730)
14 [0.723101] (__setup_irq) from (request_threaded_irq+0xec/0x160)
15 [0.723118] (request_threaded_irq) from (devm_request_threaded_irq+0x78/0xcc)
16 [0.723140] (devm_request_threaded_irq) from (bcm2835_mmc_probe+0x514/0x644)
17 [0.723159] (bcm2835_mmc_probe) from (platform_drv_probe+0x60/0xc0)
18 [0.723176] (platform_drv_probe) from (driver_probe_device+0x244/0x2f8)

콜스택을 보면 이번 절에서 분석한 함수를 볼 수 있습니다.
request_threaded_irq() 함수로 출발해서 __kthread_create_on_node() 함수까지 호출되고 있습니다. kthread_create() 함수 대신 실제 kthread_create_on_node() 함수가 실행한다는 점도 확인할 수 있습니다.

이번 소절에선 IRQ 스레드를 생성하는 흐름을 점검했습니다. 
request_threaded_irq() 함수를 호출하면 __kthread_create_on_node() 함수를 호출해서 IRQ 스레드를 생성합니다. 

다음 절에서는 IRQ 스레드가 어떻게 실행하는지 점검해보겠습니다.


IRQ 스레드 생성 예제 코드 분석 

이번에는 IRQ 스레드를 생성하는 예제 코드를 소개합니다. 실제 request_threaded_irq() 함수를 호출해서 IRQ 스레드를 생성하는 과정을 살펴보겠습니다.

분석할 코드는 다음과 같습니다.
1 static int dwc3_gadget_start(struct usb_gadget *g,
struct usb_gadget_driver *driver)
3 {
4 struct dwc3 *dwc = gadget_to_dwc(g);
5 unsigned long flags;
6 int ret = 0;
7 int irq;
8
9 irq = dwc->irq_gadget;
10 ret = request_threaded_irq(irq, dwc3_interrupt, dwc3_thread_interrupt,
11 IRQF_SHARED, "dwc3", dwc->ev_buf);

먼저 request_threaded_irq() 함수에 전달하는 인자를 살펴봅시다.
   - irq: 인터럽트 번호
   - dwc3_interrupt: 인터럽트 핸들러
   - dwc3_thread_interrupt: 인터럽트 스레드 핸들 함수
   - IRQF_SHARED: 인터럽트 플래그
   - "dwc3": 인터럽트 이름
   - dwc->ev_buf: 인터럽트 핸들러와 인터럽트 스레드 핸들 함수에 전달하는 매개인자

5장에서 인터럽트 핸들러를 설정할 때 썼던 request_irq() 함수와 유사해 보입니다. request_irq() 함수를 호출할 때 비슷한 타입의 인자를 전달하는, request_threaded_irq() 함수는 IRQ 스레드 핸들러인 dwc3_thread_interrupt() 함수를 추가합니다.

request_threaded_irq() 함수를 호출하면 해당 인터럽트에 대한 전용 IRQ 스레드가 생성됩니다. 

리눅스 커널에서 IRQ 스레드 이름을 어떻게 결정할까요?? 위 인터럽트 번호가 47이면 IRQ 스레드 이름은 "irq/47-dwc3" 입니다.

인터럽트 발생 후 dwc3_interrupt() 이란 인터럽트 핸들러에서 인터럽트에 대한 처리를 한 다음 "irq/47-dwc3" IRQ 스레드를 깨울지 결정합니다. 이후 "irq/47-dwc3" IRQ 스레드가 깨어나면 스레드 핸들러인 dwc3_thread_interrupt() 함수가 호출되는 구조입니다.

이번에는 인터럽트 핸들러인 dwc3_thread_interrupt() 함수를 보면서 세부 동작을 확인합시다. 
static irqreturn_t dwc3_interrupt(int irq, void *_evt)
{
struct dwc3_event_buffer *evt = _evt;
return dwc3_check_event_buf(evt);
}

dwc 인터럽트가 발생하면 dwc3_interrupt() 이란 인터럽트 핸들러가 실행됩니다. dwc3_interrupt() 함수는 특별한 동작을 하지 않습니다. 바로 dwc3_check_event_buf() 함수를 호출합니다.

dwc3_check_event_buf() 함수 구현부는 다음과 같습니다.
1 static irqreturn_t dwc3_check_event_buf(struct dwc3_event_buffer *evt)
2 {
3 struct dwc3 *dwc = evt->dwc;
4 u32 amount;
5 u32 count;
6 u32 reg;
7
8 if (pm_runtime_suspended(dwc->dev)) {
9 pm_runtime_get(dwc->dev);
10 disable_irq_nosync(dwc->irq_gadget);
11 dwc->pending_events = true;
12 return IRQ_HANDLED;
13 }
...
14 if (amount < count)
15 memcpy(evt->cache, evt->buf, count - amount);
16
17 dwc3_writel(dwc->regs, DWC3_GEVNTCOUNT(0), count);
18
19 return IRQ_WAKE_THREAD;
20}

위 함수를 눈여겨보면 시스템 상태에 따라 IRQ_HANDLED와 IRQ_WAKE_THREAD를 리턴합니다. 인터럽트가 발생한 후 일을 더 할 필요가 없을 때는 다음 12 번째 줄 코드와 같이 IRQ_HANDLED를 반환합니다.
8 if (pm_runtime_suspended(dwc->dev)) {
9 pm_runtime_get(dwc->dev);
10 disable_irq_nosync(dwc->irq_gadget);
11 dwc->pending_events = true;
12 return IRQ_HANDLED;
13 }

그런데 IRQ 스레드가 해당 인터럽트 핸들러 실행 이후 후속 처리를 수행해야 할 때는 IRQ_WAKE_THREAD를 반환합니다.
17 dwc3_writel(dwc->regs, DWC3_GEVNTCOUNT(0), count);
18
19 return IRQ_WAKE_THREAD;
20}

이후 IRQ 스레드가 깨어난 후 IRQ 스레드 핸들러인 dwc3_thread_interrupt() 함수가 실행됩니다. 이 함수에서 인터럽트 핸들러에서 바로 처리하지 못한 일을 수행합니다. 


IRQ 스레드는 언제 생성할까?

IRQ 스레드를 생성하기 위해서는 request_threaded_irq() 함수를 호출하면 됩니다. 
IRQ 스레드를 생성하는 흐름도는 다음과 같습니다. 










request_threaded_irq() 함수를 호출하면 다음 동작을 수행합니다.
 - 전달한 IRQ 스레드 정보를 인터럽트 컨택스트에 설정
 - kthread_create() 함수를 호출해서 IRQ 스레드 생성

kthread_create() 함수는 kthread_create_on_node() 함수로 치환됩니다. 위 그림에서 이해를 돕기 위해 kthread_create() 함수를 호출하면 kthread_create_on_node() 함수를 호출하는 것처럼 표시했습니다.

우리는 커널 쓰레드를 생성할 때 kthread_create() 함수를 호출한다고 배웠습니다. IRQ 스레드도 이 kthread_create() 함수를 호출해서 생성합니다. IRQ 스레드도 커널 스레드의 한 종류입니다. 

request_threaded_irq() 함수부터 __kthread_create_on_node() 함수까지 IRQ 스레드 어떤 방식으로 생성하는지 코드를 분석하겠습니다.
 
먼저 우선 인터럽트 핸들러를 설정하는 코드를 확인할 필요가 있습니다. 어떤 인터럽트 핸들러를 설정하는 코드를 봐야 할까요? 당연히 IRQ 스레드를 생성하는 인터럽트 핸들러 코드를 봐야합니다.

이전 소절에서 확인했듯이 라즈베리파이에서는 "irq/92-mmc1" IRQ Thread를 확인할 수 있습니다. 
root@raspberrypi:/home/pi/dev_raspberrian# ps –ely | grep irq
S   UID   PID  PPID  C PRI  NI   RSS    SZ WCHAN  TTY          TIME CMD
S     0    65     2  0   9   -     0     0 irq_th ?        00:00:00 irq/92-mmc1

IRQ 스레드는 어떤 자료구조에서 관리할까요?
정답은 인터럽트 디스크립터입니다. IRQ 스레드 핸들러와 관련 필드 정보를 관리합니다.

인터럽트 디스크립터는 인터럽트 세부 속성과 IRQ 스레드 정보까지 저장합니다.

IRQ 스레드를 생성하기 위해서 request_threaded_irq() 함수를 호출해야 합니다.
함수 선언부와 인자를 소개합니다.
extern int __must_check
request_threaded_irq(unsigned int irq, irq_handler_t handler,
     irq_handler_t thread_fn,
     unsigned long flags, const char *name, void *dev);

request_threaded_irq() 함수에 전달되는 인자들은 다음과 같습니다.

unsigned int  irq: 인터럽트 번호
irq_handler_t   handler: 인터럽트 핸들러 주소
irq_handler_t   thread_fn: IRQ 스레드 핸들 함수 주소
unsigned long  flags: 인터럽터 핸들링 플래그
const char   name: 인터럽트 이름

request_threaded_irq() 함수는 동작은 2단계로 나눌 수 있습니다.

1 단계: 인터럽트 디스크립터 설정
requested_threaded_irq() 함수에 전달된 인자를 인터럽트 디스크립터 필드에
저장합니다.

2 단계: IRQ 스레드 생성
irq_handler_t thread_fn 인자가 IRQ 스레드 핸들 주소를 저장하면 IRQ 스레드를 생성합니다.

request_threaded_irq() 함수 분석
IRQ 스레드 생성 단계에 대해 소개했으니 이제 코드 분석으로 넘어갑시다.
request_threaded_irq() 함수 코드를 소개합니다.
1 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
 irq_handler_t thread_fn, unsigned long irqflags,
 const char *devname, void *dev_id)
4 {
struct irqaction *action;
struct irq_desc *desc;
int retval;
...
8 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
9 if (!action)
10 return -ENOMEM;
...
11  action->handler = handler;
12  action->thread_fn = thread_fn;  
13  action->flags = irqflags;
14  action->name = devname;
15  action->dev_id = dev_id;
16 
17  chip_bus_lock(desc);
18  retval = __setup_irq(irq, desc, action);  

먼저 8~10 번째 줄 코드를 봅시다.
8 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
9 if (!action)
10 return -ENOMEM;

struct irqaction 타입인 action 지역 변수에 struct irqaction 구조체 크기만큼 동적 메모리를 할당합니다. 

action란 포인터 타입 지역 변수의 타입은 struct irqaction 구조체입니다. 이 변수는 8번째 줄 코드와 같이 메모리 할당을 받은 다음에 9번째와 13번째 줄 코드와 같이 인터럽트 핸들러와 IRQ 스레드 핸들러 정보를 저장합니다. 이 변수는 나중에 인터럽트 디스크립터의 action 필드에 저장됩니다. 

만약 메모리를 할당 못하면 10 번째 줄 코드을 실행해 –ENOMEM 매크로를 반환하며 함수 실행을 종료합니다.

다음에 볼 11~15 번째 줄 코드는 인자를 action 필드에 저장하는 동작입니다.
11  action->handler = handler;
12  action->thread_fn = thread_fn;  
13  action->flags = irqflags;
14  action->name = devname;
15  action->dev_id = dev_id;

특히 12 번째 줄 코드를 보면 IRQ 스레드 핸들 함수 주소를 저장하고 있는 thread_fn 포인터를 action->thread_fn에 저장합니다.

struct irqaction 타입 action 변수는 해당 인터럽트 디스크립터에 저장됩니다.
Trace32로 확인한 인터럽트 디스크립터 자료 구조는 다음과 같습니다.
1 (struct irq_desc *) (struct irq_desc*)0xB008B300
...
2    (struct irqaction *) action = 0xBB4E6E40  
3      (irq_handler_t) handler = 0x8061EC00 = bcm2835_mmc_irq, /* 인터럽트 핸들러 */
4      (void *) dev_id = 0xBB47B010  /* 인터럽트 핸들러 핸들
5      (void *) percpu_dev_id = 0x0 = ,
6      (struct irqaction *) next = 0x0 = ,
7      (irq_handler_t) thread_fn = 0x8061DCC4 = bcm2835_mmc_thread_irq, /* IRQ Thread 핸들러 */
8      (struct task_struct *) thread = 0xBB516CC0 /* “irq/92-mmc1” IRQ 스레드의 태스크 디스크립터 */
9      (struct irqaction *) secondary = 0x0 = ,
10      (unsigned int) irq = 92, /* 인터럽트 번호 */

위 인터럽트 디스크립터는 라즈베리파이 92번 인터럽트를 관리하는 IRQ 스레드를 설정 정보를 포함합니다. 각각 필드에 대한 설명은 주석문을 참고하시기 바랍니다.

다음 18번째 줄 코드를 보면 __setup_irq() 함수를 호출합니다.
16  retval = __setup_irq(irq, desc, action);

여기까지는 인터럽트 핸들러를 등록하는 실행 흐름과 똑같습니다. 그런데 __setup_irq() 함수 코드를 조금 더 살펴보면 Thread 스레드로 설정할 때만 동작하는 코드를 볼 수 있습니다. 

__setup_irq() 함수 분석
이어서 __setup_irq() 코드를 같이 분석해 봅시다.
1 static int
2 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
3 {
4 struct irqaction *old, **old_ptr;
5 unsigned long flags, thread_mask = 0;
...
6 nested = irq_settings_is_nested_thread(desc);
...
7 if (new->thread_fn && !nested) {  
8 ret = setup_irq_thread(new, irq, false);
9 if (ret)
10 goto out_mput;

우선 __setup_irq 함수에 전달되는 파라미터는 아래와 같습니다.
irq: 인터럽트 번호
desc: 인터럽트 디스크립터
new: 인터럽트 디스크립터의 action 멤버(struct irq_desc->action)

__setup_irq() 함수는 IRQ 스레드 핸들 함수가 등록됐는지 점검한 후 등록이 됐으면 setup_irq_thread() 함수를 호출해서 IRQ 스래드를 생성합니다.

먼저 6 번째 줄 코드를 봅시다. 
6 if (new->thread_fn && !nested) {  
7 ret = setup_irq_thread(new, irq, false);

이 코드는 두 가지 조건을 점검합니다.  struct irqaction 타입인 new->thead_fn 필드에 함수 포인터가 등록됐거나 nested 변수가 0일 때 setup_irq_thread() 함수를 호출합니다. 

nested 변수는 현재 설정하는 IRQ 스레드가 nested 타입인지 점검합니다. 이 기능을 쓸 경우 nested 변수가 1이 됩니다. nested 변수를 읽어 오는 다음 코드를 눈여겨봅시다.
6 nested = irq_settings_is_nested_thread(desc);

여기서 new->thead_fn 로 IRQ 스레드 핸들러 함수가 등록됐고 nested 변수가 0이면 7번째 줄 코드가 실행됩니다.

setup_irq_thread() 함수 분석 

이어서 IRQ 스레드를 생성 역할을 수행하는 setup_irq_thread() 함수를 분석하겠습니다.
1 static int
2 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
3 {
4 struct task_struct *t;
5 struct sched_param param = {
6 .sched_priority = MAX_USER_RT_PRIO/2,
7 };
8
9 if (!secondary) {
10 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,   
11    new->name);
12 } else {
13 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
14    new->name);
15 param.sched_priority -= 1;
16 }

위 코드를 보면 특별한 동작을 수행하지 않습니다. kthread_create() 함수를 호출해서 커널 스레드를 생성합니다. 이 코드로 IRQ 스레드도 커널 스레드의 한 종류라고 말할 수 있겠습니다.


커널 스레드는 커널 공간에서만 실행하는 프로세스입니다. 
유저 공간과 시스템 콜로 통신하지 않고 배경 작업으로 커널 리소스를 관리하는 역할을 수행합니다.

커널에는 다양한 커널 스레드를 볼 수 있습니다.
커널 서브 시스템이나 드라이버 목적에 맞는 커널 스레드를 생성할 수 있는 것입니다.
워크큐를 실행하는 스레드를 워커 스레드, 메모리가 부족할 때 kswapd 스레드 그리고 Soft IRQ 후반부 처리용 ksoftirqd 스레드를 예를 들 수 있습니다.

IRQ 스레드로 여러 커널 스레드 중 하나입니다.


먼저 10번째 줄 코드를 보겠습니다. irq_thread() 이란 IRQ 스레드를 제어하는 함수와 함께 "irq/%d-%s"란 이름으로 IRQ Thread를 생성합니다. 
9 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,   
10    new->name);

kthread_create() 함수를 호출할 때 다음과 같은 인자를 지정합니다.
   - irq_thread: IRQ 스레드 핸들 함수
   - new: IRQ 스레드 핸들 매개 인자(struct irqaction)
   - "irq/%d-%s": IRQ 스레드 이름 타입
   - irq: 인터럽트 번호
   - new->name: 인터럽트 이름 

kthread_create() 함수에 전달하는 두 번째 파라미터인 new는 스레드 핸들 함수로 전달되는 매개 인자입니다. 이 매개 인자는 struct irqaction 구조체 타입입니다.

IRQ 스레드의 스레드 핸들인 irq_thread() 함수 코드를 보면서 매개 인자 처리 방식에 대해 조금 더 살펴보겠습니다.
1 static int irq_thread(void *data)
2 {
3 struct callback_head on_exit_work;
4 struct irqaction *action = data;

우리는 커널 쓰레드를 생성하면 커널 스레드드 핸들 함수에서 무한 루프를 돌면서 스레드 목적에 맞는 동작을 수행합니다.  그런데 IRQ 스레드는 irq_thread() 함수가 이 역할을 수행합니다. 

IRQ 스레드가 실행할 때 irq_thread() 함수가 실행하는데 함수 인자로 void 타입 data 포인터를 전달합니다. 위 irq_thread() 함수 4 번째 줄 코드를 눈여겨보면 이 포인터를 struct irqaction * 타입으로 캐스팅합니다.

이 과정을 다음 다이어그램으로 정리할 수 있습니다.

이제 IRQ 스레드를 생성하는 함수 흐름을 알아봤으니 IRQ 스레드를 생성하는 예제 코드를 살펴보겠습니다. 
[drivers/mmc/host/bcm2835-mmc.c]
1 static int bcm2835_mmc_add_host(struct bcm2835_host *host)
2 {
3 struct mmc_host *mmc = host->mmc;
4 struct device *dev = mmc->parent;
...
5 bcm2835_mmc_init(host, 0);
6 ret = devm_request_threaded_irq(dev, host->irq, bcm2835_mmc_irq,
7 bcm2835_mmc_thread_irq, IRQF_SHARED,
8 mmc_hostname(mmc), host); 

bcm2835_mmc_add_host() 함수에서 라즈베리파이에서 92번 인터럽트 핸들러와 해당 IRQ Thread를 설정하는 코드를 볼 수 있습니다.

위 코드를 보면 request_threaded_irq() 함수 대신 devm_request_threaded_irq() 함수를 써서 IRQ 스레드를 설정합니다. 함수 이름이 다르니 다른 동작을 하는 함수로 보입니다. 하지만 devm_request_threaded_irq() 함수를 열어 보면 request_threaded_irq() 함수를 호출합니다.
1 int devm_request_threaded_irq(struct device *dev, unsigned int irq,
2       irq_handler_t handler, irq_handler_t thread_fn,
3       unsigned long irqflags, const char *devname,
4       void *dev_id)
5 {
6 struct irq_devres *dr;
7 int rc;
8
...
9
10 rc = request_threaded_irq(irq, handler, thread_fn, irqflags, devname,
11   dev_id);

devm_request_threaded_irq() 함수는 인터럽트 설정 정보를 디바이스 드라이버에서 체계적으로 관리하는 동작 이외에 request_threaded_irq() 함수와 같은 역할을 수행합니다. IRQ 스레드 관점으로 devm_request_threaded_irq() 함수를 호출하면 request_threaded_irq() 함수가 실행된다고 봐도 무방합니다.

아래 코드에서 devm_request_threaded_irq() 함수에서 호출하는 request_threaded_irq() 함수는 어디서 많이 본 함수 같지 않나요? 맞습니다. 인터럽트 핸들러를 등록할 때 호출하는 request_irq() 함수에서 request_threaded_irq() 함수를 호출했습니다.  5장에서 본 다음 자료 구조를 떠 올립시다.
static inline int __must_check
request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
    const char *name, void *dev)
{
return request_threaded_irq(irq, handler, NULL, flags, name, dev);
}

이번에 request_threaded_irq() 함수에 전달하는 인자가 약간 다른 것 같습니다.
6 ret = devm_request_threaded_irq(dev, host->irq, bcm2835_mmc_irq,
7 bcm2835_mmc_thread_irq, IRQF_SHARED,
8 mmc_hostname(mmc), host); 

6번째 줄을 보면 bcm2835_mmc_irq() 함수를 인터럽트 핸들러로 등록합니다. 이 함수는 92번 “mmc1” 인터럽트가 발생하면 호출되는 함수입니다. 

7번째 줄 코드를 보면 request_threaded_irq() 함수 세 번째 인자로 bcm2835_mmc_thread_irq() 함수를 전달합니다. 이 함수를 IRQ Thread 핸들러라고 합니다. IRQ Thread가 실행될 때 호출되는 핸들러 함수입니다.  

조금 더 이해를 돕기 위해 request_threaded_irq() 함수의 선언부를 보면 세 번째 인자로 irq_handler_t thread_fn가 선언돼 있습니다. 두 번째 인자는 인터럽트 핸들러 함수입니다.
[include/linux/interrupt.h]
extern int __must_check
request_threaded_irq(unsigned int irq, irq_handler_t handler,
     irq_handler_t thread_fn,
     unsigned long flags, const char *name, void *dev);

thread_fn 이란 함수 포인터에 bcm2835_mmc_thread_irq() 이란 IRQ Thread 핸들러 함수를 등록하는 것입니다.

이를 알기 쉬운 코드 형식으로 표현하면 아래와 같이 각각 인자를 다음과 같이 등록합니다.
인터럽트 번호irq = host->irq
인터럽트 핸들러:  handler = bcm2835_mmc_irq
IRQ Thread 핸들러: thread_fn = bcm2835_mmc_thread_irq

인터럽트가 발생했을 때 인터럽트 컨택스트에서 수행하는 인터럽트 핸들러는 bcm2835_mmc_irq() 함수이고 “irq/92-mmc1” IRQ Thread에서 실행하는 핸들러 함수는 bcm2835_mmc_thread_irq() 함수인 것입니다. 

다음은 IRQ 스레드를 생성하는 코드를 보면서 92번 인터럽트에 대한 IRQ 스레드 이름을 어떤 규칙으로 생성하는지 알아봅시다.
1 static int
2 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
3 {
4 struct task_struct *t;
5 struct sched_param param = {
6 .sched_priority = MAX_USER_RT_PRIO/2,
7 };
8
9 if (!secondary) {
10 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,   
11    new->name);
12 } else {
13 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
14    new->name);
15 param.sched_priority -= 1;
16 }


이 정보를 참고하면 “irq=92 name=mmc1” 인터럽트의 IRQ 스레드 이름은 “irq/92-mmc1”라는 점을 유추할 수 있습니다. 

“irq/92-mmc1” IRQ 스레드는 언제 실행될까요? 이 내용은 다음 소절에서 자세히 다룰 예정인데, 92번 인터럽트가 발생하면 호출되는 인터럽트 핸들러가 IRQ 스레드 실행 여부를 결정합니다. 만약 92번 인터럽트가 발생하지 않으면 IRQ 스레드는 실행하지 않습니다.
 


IRQ 스레드란
리눅스 커널을 익히는 과정에서 만나는 걸림돌 중 하나가 어려운 용어입니다. 어려운 개념을 낯선 용어로 설명하니 이해하기 어렵죠. IRQ Thread의 의미를 알기 전에 IRQ란 용어부터 알아볼까요? IRQ는 Interrupt Request의 약자로 하드웨어에서 발생한 인터럽트를 처리 한다는 의미입니다. 조금 더 구체적으로 인터럽트 발생 후 인터럽트 핸들러까지 처리하는 흐름입니다. 

IRQ Thread란 뭘까요? 인터럽트 핸들러에서는 처리하면 오래 걸리는 일을 수행하는 프로세스입니다. 인터럽트 후반부 처리를 위한 인터럽트 처리 전용 프로세스입니다. 리눅스 커널에서는 IRQ Thread를 irq_thread라고도 합니다. 리눅스 커널 커뮤니티에서는 threaded IRQ 방식이라고도 합니다. 용어는 달라도 같은 의미입니다. 

IRQ Thread 기법은 인터럽트 후반부 처리를 IRQ Thread에서 수행하는 방식을 의미합니다. 이제 용어를 간단히 정리했으니 IRQ Thread에 대해 조금 더 알아볼게요. 

IRQ 스레드 확인하기
라즈베리안에서는 IRQ Thread를 어떻게 확인할 수 있을까요? ps -ely 명령어를 입력하면 프로세스 목록을 볼 수 있습니다. 
root@raspberrypi:/home/pi/dev_raspberrian# ps -ely
S   UID   PID  PPID  C PRI  NI   RSS    SZ WCHAN  TTY          TIME CMD
S     0     1     0  0  80   0  6012  6750 SyS_ep ?        00:00:02 systemd
S     0     2     0  0  80   0     0     0 kthrea ?        00:00:00 kthreadd
//...
S     0    64     2  0  70 -10     0     0 down_i ?        00:00:00 SMIO
S     0    65     2  0   9   -     0     0 irq_th ?        00:00:00 irq/92-mmc1
I     0    66     2  0  80   0     0     0 worker ?        00:00:00 kworker/0:3

위 목록에서 irq/92-mmc1가 보이죠. 이 프로세스가 IRQ Thread입니다. 커널에서 지어준 이름인데 다음 규칙에 따라 이름을 짓습니다.
"irq/인터럽트 번호-인터럽트 이름"

irq/92-mmc1프로세스는 위 규칙에 따라 어떻게 해석하면 될까요? mmc1이란 이름의 92번째 인터럽트를 처리하는 IRQ Thread라 할 수 있습니다. 라즈베리안에서는 위와 같이 1개의 IRQ Thread만 볼 수 있는데, 다른 리눅스 시스템에서는 보통 10개 이상 IRQ Thread를 확인할 수 있습니다.

이번에는 다른 리눅스 시스템에서 IRQ Thread를 확인해볼까요? 
다음 로그는 안드로이드를 탑재한 Z5 compact 제품(Snapdragon 810)의 리눅스 개발자 커뮤니티에서 공유된 로그입니다.
1  root      14    2     0      0     worker_thr 0000000000 S kworker/1:0H
2  root      15    2     0      0     smpboot_th 0000000000 S migration/2
3  root      16    2     0      0     smpboot_th 0000000000 S ksoftirqd/2
//...
4  root      36    2     0      0     rescuer_th 0000000000 S rpm-smd
5  root      38    2     0      0     irq_thread 0000000000 S irq/48-cpr
6  root      39    2     0      0     irq_thread 0000000000 S irq/51-cpr
//...
7  root      199   2     0      0     irq_thread 0000000000 S irq/212-msm_dwc
//...
8  root      65    2     0      0     irq_thread 0000000000 S irq/261-msm_iom
9  root      66    2     0      0     irq_thread 0000000000 S irq/263-msm_iom
10 root      67    2     0      0     irq_thread 0000000000 S irq/261-msm_iom
11 root      68    2     0      0     irq_thread 0000000000 S irq/263-msm_iom
12 root      69    2     0      0     irq_thread 0000000000 S irq/261-msm_iom
13 root      70    2     0      0     irq_thread 0000000000 S irq/263-msm_iom
14 root      71    2     0      0     irq_thread 0000000000 S irq/261-msm_iom
15 root      72    2     0      0     irq_thread 0000000000 S irq/263-msm_iom
16 root      73    2     0      0     irq_thread 0000000000 S irq/261-msm_iom
17 root      74    2     0      0     irq_thread 0000000000 S irq/263-msm_iom
18 root      75    2     0      0     irq_thread 0000000000 S irq/261-msm_iom

ps 명령어로 출력한 전체 프로세스 중 IRQ Thread만 가려냈는데요. irq_thread 타입으로 볼드체로 표시한 프로세스가 IRQ Thread입니다. IRQ Thread가 14개나 있네요.

위 로그 중에 “irq/212-msm_dwc”란 IRQ Thread를 해석하면 msm_dwc란 이름의 212번째 인터럽트를 처리하는 IRQ Thread라고 볼 수 있겠죠. 
7 root      199   2     0      0     irq_thread 0000000000 S irq/212-msm_dwc

이렇게 상용 리눅스 시스템의 IRQ Thread 개수를 소개한 이유는 여러분이 IRQ Thread는 1개 밖에 없다고 착각할 수 있기 때문입니다. 왜냐면, 라즈베리안에서 IRQ Thread가 1개 밖에 없으니까요. 

이렇게 라즈베리안에 비해 상용 안드로이드 리눅스 디바이스에서는 IRQ Thread가 더 많은 것 같습니다. IRQ Thread가 더 많으면 더 좋은 시스템일까요? 그렇지는 않습니다. 이는 시스템에 인터럽트를 어떻게 설계하고 구성했는지에 따라 다릅니다. 

어떤 인터럽트가 발생하면 인터럽트 핸들러 이후에 실행되는 IRQ Thread가 있다는 것은 뭘 의미할까요? 해당 인터럽트가 발생하면 소프트웨어적으로 할 일이 많다고 봐야겠죠. 인터럽트가 발생했을 때 바로 해야 하는 일은 인터럽트 핸들러에서 처리하고, 조금 후 프로세스 레벨에서 해도 되는 일은 IRQ Thread에서 수행하는 것입니다.

IRQ Thread를 생성하기 위해서는 어떻게 해야 하죠? 방법은 간단합니다. 인터럽트 핸들러를 설정하는 request_irq 함수 대신 request_threaded_irq 을 호출하면 됩니다.

request_threaded_irq 함수의 원형은 다음과 같은데요. 세 번째 파라미터인 thread_fn에 IRQ Thread가 실행되면 호출할 핸들러만 지정해주면 됩니다. 그러면 커널에서 인터럽트 이름과 번호 정보를 바탕으로 IRQ Thread를 생성해 줍니다.
extern int __must_check
request_threaded_irq(unsigned int irq, irq_handler_t handler,
     irq_handler_t thread_fn,
     unsigned long flags, const char *name, void *dev);

여기서 Top Half는 인터럽트 핸들러인 handler 그리고 Bottom Half는 IRQ Thread가 수행되면 수행하는 핸들러 함수인 thread_fn 라고 할 수 있겠죠.

실제 request_threaded_irq를 호출하는 코드를 보면서 이 내용을 함께 알아볼까요? 다음 코드는 다른 리눅스 시스템에서 USB 드라이버 설정 코드입니다. 
1 static int dwc3_gadget_start(struct usb_gadget *g,
struct usb_gadget_driver *driver)
3 {
4 struct dwc3 *dwc = gadget_to_dwc(g);
5 unsigned long flags;
6 int ret = 0;
7 int irq;
8
9 irq = dwc->irq_gadget;
10 ret = request_threaded_irq(irq, dwc3_interruptdwc3_thread_interrupt,
11 IRQF_SHARED, "dwc3", dwc->ev_buf);

인터럽트 핸들러를 설정할 때 썼던 request_irq 함수와 유사해 보이네요. 그런데 request_threaded_irq 함수도 비슷하게 인터럽트 핸들러를 등록하는 것 같습니다. request_irq를 호출할 때 같은 인자를 채우는데, request_threaded_irq는 IRQ Thread 핸들러인 dwc3_thread_interrupt 함수를 추가하는군요.

request_threaded_irq 함수 호출로 해당 인터럽트에 대한 전용 IRQ Thread가 생성됩니다. 리눅스 커널에서 이 IRQ Thread 이름을 어떻게 지을까요? 위 인터럽트 번호가 47이면  "irq/47-dwc3"이 되겠죠.

인터럽트 발생 후 dwc3_interrupt란 인터럽트 핸들러에서 인터럽트에 대한 처리를 한 다음 "irq/47-dwc3" IRQ Thread를 깨울지 결정합니다. 이후 "irq/47-dwc3" IRQ Thread가 깨어나면 dwc3_thread_interrupt 함수가 호출되는 구조죠.

해당 코드를 볼까요? dwc 인터럽트가 발생하면 dwc3_interrupt란 인터럽트 핸들러가 실행되겠죠? 다음 dwc3_interrupt 함수를 보면 바로 dwc3_check_event_buf 함수를 호출하는군요. 
static irqreturn_t dwc3_interrupt(int irq, void *_evt)
{
struct dwc3_event_buffer *evt = _evt;
return dwc3_check_event_buf(evt);
}

dwc3_check_event_buf 함수 구현부는 다음과 같습니다.
1 static irqreturn_t dwc3_check_event_buf(struct dwc3_event_buffer *evt)
2 {
3 struct dwc3 *dwc = evt->dwc;
4 u32 amount;
5 u32 count;
6 u32 reg;
7
8 if (pm_runtime_suspended(dwc->dev)) {
9 pm_runtime_get(dwc->dev);
10 disable_irq_nosync(dwc->irq_gadget);
11 dwc->pending_events = true;
12 return IRQ_HANDLED;
13 }
//...
14 if (amount < count)
15 memcpy(evt->cache, evt->buf, count - amount);
16
17 dwc3_writel(dwc->regs, DWC3_GEVNTCOUNT(0), count);
18
19 return IRQ_WAKE_THREAD;
20}

위 함수를 눈여겨보면 시스템 상태에 따라 IRQ_HANDLED와 IRQ_WAKE_THREAD를 리턴합니다. 인터럽트가 발생한 후 일을 더 할 필요가 없을 때는 다음 코드와 같이 IRQ_HANDLED를 리턴합니다.
8 if (pm_runtime_suspended(dwc->dev)) {
9 pm_runtime_get(dwc->dev);
10 disable_irq_nosync(dwc->irq_gadget);
11 dwc->pending_events = true;
12 return IRQ_HANDLED;
13 }

특정 조건으로 IRQ Thread가 해당 인터럽트에 대한 처리를 더 수행해야 할 때는 IRQ_WAKE_THREAD를 리턴합니다.
17 dwc3_writel(dwc->regs, DWC3_GEVNTCOUNT(0), count);
18
19 return IRQ_WAKE_THREAD;
20}

이후 IRQ Thread가 깨어난 후 IRQ Thread 핸들러인 dwc3_thread_interrupt가 인터럽트 핸들러에서 바로 하지 못한 일을 수행합니다. 

여기까지 라즈베리안에서 실행하는 드라이버 코드는 아니지만, 다른 시스템 드라이버에서는 어떤 방식으로 request_threaded_irq을 호출했는지 간단히 리뷰했습니다. 다음 시간에는 라즈베리안에서 IRQ Thread가 어떻게 실행하는지 더 자세히 알아볼까요?


인터럽트 후반부 기법을 적용하는 이유

인터러트 후반부 기법을 쓰는 이유에 대해 알아보기 전에 커널이 인터럽트를 어떤 방식으로 처리하는지 살펴볼 필요가 있습니다. 5장에서 배운 내용을 정리해보겠습니다.
   1. 인터럽트가 발생하면 커널은 실행 중인 프로세스를 멈추고 인터럽트 벡터를 실행해서 인터럽트 핸들러를 실행합니다.
   2. 인터럽트 핸들러는 짧고 빨리 실행해야 합니다.
   3. 인터럽트를 처리하는 구간이 인터럽트 컨택스트인데 이를 in_interrupt() 함수가 알려줍니다.

인터럽트 후반부 기법을 적용해야 하는 이유는 인터럽트 컨택스트에서 빨리 실행을 끝내야 하기 때문입니다. 인터럽트는 실행 중인 코드를 멈추고 인터럽트를 핸들링하기 때문입니다.

자연스럽게 임베디드 리눅스 개발자뿐만 아니라 임베디드 개발에서 다음과 같은 고민을 하게됐습니다.
인터럽트 핸들러나 인터럽트 컨택스트에서 어떻게 하면 빨리 코드를 처리해야 할까?

여러 고민 끝에 인터럽트가 발생하면 이를 처리할 코드를 2 단계로 나누게 됐습니다. 빨리 실행해야 할 코드는 인터럽트 컨택스트, 실시간으로 빨리 처리하지 않아도 되는 코드는 인터럽트를 핸들링한 다음에 실행하는 것입니다. 이 과정에서 다음과 같은 인터럽트 후반부 처리 기법을 이끌어낸 것입니다. 

이를 위해 커널은 다음과 같은 인터럽트 후반부 처리 방식을 지원합니다.
   - IRQ 스레드
   - Soft IRQ
   - 태스크릿
   - 워크큐

다음 소절에서는 인터럽트 컨택스트에서 시간이 오래 걸리는 코드를 수행하면 어떤 일이 발생하는지 살펴보겠습니다.

인터럽트 컨택스트에서 많은 일을 하면 어떻게 될까?

인터럽트 후반부 처리 기법을 왜 적용해야 하는지 설명드리기 위해 인터럽트 컨택스트에서 많은 일을 하는 코드를 적용하면 시스템이 어떻게 오작동하는지 소개합니다.

디바이스 드라이버를 개발하다 보면 인터럽트 컨택스트에서 인터럽트 핸들링을 할 때 많은 일을 하는 코드를 입력할 때가 있습니다. 대표적으로 다음과 같은 예를 들 수 있습니다.
   - I/O을 시작하는 코드
   - 과도한 while loop
   - 유저 공간으로uevent를 전달해서 인터럽트 발생을 알림
   - 스케줄링을 지원하는 커널 함수 호출

위와 같은 코드를 입력하면 시스템 반응 속도가 아주 느려지거나 평소에 볼 수 없는 오류 메시지를 볼 수 있습니다. 

인터럽트 핸들러와 서브 루틴에서 코드를 작성할 때 빨리 실행하는 코드를 입력해야 합니다. 여기서 중요한 의문점이 생깁니다.
인터럽트 컨택스트에서 인터럽트를 핸들링 하는 코드 실행 시간을 어떻게 측정할 수 있을까? 

이를 위해 ftrace 기능에서 지원하는 graph_function 트레이서 기능을 써서 인터럽트 핸들링을 할 때 얼마나 시간이 걸리는 지 측정할 필요가 있습니다. 이번 장 디버깅 장에서 이 방식에 대해 소개합니다.

심지어 인터럽트 컨택스트에서 스케줄링을 지원하는 함수를 쓸 경우 커널은 강제 커널 크래시를 유발합니다. 

여기서 인터럽트 핸들러에서 많은 일을 하다가 커널 패닉이 발생하는 예를 들어 보겠습니다.  다음 로그는 인터럽트 핸들러 실행 도중 발생한 커널 패닉 로그입니다. 함수가 일렬로 정렬해 있습니다.
01 [21.719319] [callstack mxt_interrupt,2449] task[InputReader]========= 
02 [21.719382] BUG: scheduling while atomic: InputReader/1039/0x00010001
03 [21.719417] (unwind_backtrace+0x0/0x144) from (dump_stack+0x20/0x24)
04 [21.719432] (dump_stack+0x20/0x24) from (__schedule_bug+0x50/0x5c)
05 [21.719444] (__schedule_bug+0x50/0x5c) from (__schedule+0x7c4/0x890)
06 [21.719455] (__schedule+0x7c4/0x890) from [<c0845d70>] (schedule+0x40/0x80)
07 [21.719468] (schedule+0x40/0x80) from [<c0843bc0>] (schedule_timeout+0x190/0x33c)
08 [21.719480] (schedule_timeout+0x190/0x33c) from (wait_for_common+0xb8/0x15c)
09 [21.719491] (wait_for_common+0xb8/0x15c) from (wait_for_completion_timeout+0x1c/0x20)
10 [21.719504] (wait_for_completion_timeout+0x1c/0x20) from (tegra_i2c_xfer_msg+0x380/0x958)
11 [21.719517] (tegra_i2c_xfer_msg+0x380/0x958) from (tegra_i2c_xfer+0x314/0x438)
12 [21.719531] (tegra_i2c_xfer+0x314/0x438) from (i2c_transfer+0xc4/0x128)
13 [21.719546] (i2c_transfer+0xc4/0x128) from (__mxt_read_reg+0x70/0xc8)
14 [21.719560] (__mxt_read_reg+0x70/0xc8) from (mxt_read_and_process_messages+0x58/0x1648)
15 [21.719572] (mxt_read_and_process_messages+0x58/0x1648) from (mxt_interrupt+0x78/0x144)
16 [21.719588] (mxt_interrupt+0x78/0x144) from (handle_irq_event_percpu+0x88/0x2ec)
17 [21.719601] (handle_irq_event_percpu+0x88/0x2ec) from (handle_irq_event+0x4c/0x6c)
18 [21.719614] (handle_irq_event+0x4c/0x6c) from (handle_level_irq+0xbc/0x118)
19 [21.719626] (handle_level_irq+0xbc/0x118) from (generic_handle_irq+0x3c/0x50)
20 [21.719642] (generic_handle_irq+0x3c/0x50) from (tegra_gpio_irq_handler+0xa8/0x124)
21 [21.719655] (tegra_gpio_irq_handler+0xa8/0x124) from (generic_handle_irq+0x3c/0x50)
22 [21.719669] (generic_handle_irq+0x3c/0x50) from (handle_IRQ+0x5c/0xbc)
23 [21.719682] (handle_IRQ+0x5c/0xbc) from (gic_handle_irq+0x34/0x68)
24 [21.719694] (gic_handle_irq+0x34/0x68) from (__irq_svc+0x40/0x70)

참고로 위 로그가 동작한 시스템은 엔비디아 Tegra4i SoC 디바이스입니다. 그래서 tegra가 붙은 함수들이 보입니다. 라즈베리파이 이외에 다른 리눅스 시스템에서 인터럽트를 어떻게 처리하는지 알면 좋으니 리눅스 시스템에서 발생한 문제를 소개합니다.

로그를 꼼꼼히 분석하겠습니다. 함수들이 줄 서 있는데 어느 부분 로그부터 읽어봐야 할까요? 함수들이 가장 먼저 실행된 순서로 정렬돼 있으니 가장 아랫부분 로그부터 봐야 합니다. 이제부터 5장에서 배운 내용을 떠 올리면서 로그 분석을 시작합니다.
 
가장 처음 실행된 함수 로그부터 보겠습니다. 24 번째 줄 코드를 눈으로 따라가 보면 __irq_svc 레이블이 보일 것입니다. 
21 [21.719655] (tegra_gpio_irq_handler+0xa8/0x124) from (generic_handle_irq+0x3c/0x50)
22 [21.719669] (generic_handle_irq+0x3c/0x50) from (handle_IRQ+0x5c/0xbc)
23 [21.719682] (handle_IRQ+0x5c/0xbc) from (gic_handle_irq+0x34/0x68)
24 [21.719694] (gic_handle_irq+0x34/0x68) from (__irq_svc+0x40/0x70)

인터럽트가 발생했다는 사실을 알 수 있습니다. 우리는 인터럽트가 발생하면 인터럽트 벡터인 __irq_svc가 실행한다는 것을 5장에서 배웠습니다. 또한 인터럽트 벡터인 __irq_svc 함수부터 실행된 콜스택(함수 흐름)이니 인터럽트 컨택스트입니다. 

다음 14~16 번째 로그를 보겠습니다.
14 [21.719560] (__mxt_read_reg+0x70/0xc8) from (mxt_read_and_process_messages+0x58/0x1648)
15 [21.719572] (mxt_read_and_process_messages+0x58/0x1648) from (mxt_interrupt+0x78/0x144)
16 [21.719588] (mxt_interrupt+0x78/0x144) from (handle_irq_event_percpu+0x88/0x2ec)

아래 로그로 인터럽트 핸들러로 mxt_interrupt() 함수가 호출됐다는 사실을 알 수 있습니다. 

우리는 5장에서 인터럽트 핸들러는 __handle_irq_event_percpu() 함수에서 호출한다고 배웠습니다. 그런데 위 로그에서는 handle_irq_event_percpu() 함수에서 인터럽트 핸들러를 호출합니다.

그 이유는 이 로그를 출력한 시스템의 리눅스 커널 버전이 3.10.77 버전이기 때문입니다. 다음 코드를 보면 5번째 줄 코드에서 인터럽트 핸들러를 호출합니다.
1 irqreturn_t
2 handle_irq_event_percpu(struct irq_desc *desc, struct irqaction *action)
3 {
...
4 do {
...
5 res = action->handler(irq, action->dev_id);

리눅스 커널 버전에 따라 인터럽트를 처리하는 함수가 달라질 수 있습니다.

다음 로그를 보겠습니다. 커널 패닉이 발생한 이유를 출력하고 있습니다. 
05 [21.719444] (__schedule_bug+0x50/0x5c) from (__schedule+0x7c4/0x890)
06 [21.719455] (__schedule+0x7c4/0x890) from [<c0845d70>] (schedule+0x40/0x80)
07 [21.719468] (schedule+0x40/0x80) from [<c0843bc0>] (schedule_timeout+0x190/0x33c)
08 [21.719480] (schedule_timeout+0x190/0x33c) from (wait_for_common+0xb8/0x15c)
09 [21.719491] (wait_for_common+0xb8/0x15c) from (wait_for_completion_timeout+0x1c/0x20)
10 [21.719504] (wait_for_completion_timeout+0x1c/0x20) from (tegra_i2c_xfer_msg+0x380/0x958)
11 [21.719517] (tegra_i2c_xfer_msg+0x380/0x958) from (tegra_i2c_xfer+0x314/0x438)
12 [21.719531] (tegra_i2c_xfer+0x314/0x438) from (i2c_transfer+0xc4/0x128)
13 [21.719546] (i2c_transfer+0xc4/0x128) from (__mxt_read_reg+0x70/0xc8)

함수 흐름으로 보아 wait_for_common() 함수를 호출해서 complete() 함수가 수행되기를 기다리는 상황입니다. 그런데 complete() 함수 호출을 안 하니 schedule_timeout() 함수를 호출합니다.

schedule_timeout() 함수에서 다음 순서로 함수를 호출합니다. 
__schedule() -> __schedule_bug() 

이번에 커널 패닉이 발생하는 이유를 알려주는 로그를 소개합니다. 
01 [21.719319] [callstack mxt_interrupt,2449] task[InputReader]========= 
02 [21.719382] BUG: scheduling while atomic: InputReader/1039/0x00010001

인터럽트 컨택스트에서 스케줄링을 하니 커널은 이를 감지하고 커널 패닉을 유발하는 것입니다.

02 번째 줄 로그를 보면 InputReader는 프로세스 이름, pid는 1039 그리고 0x00010001는 프로세스 struct thread_info구조체 preempt_count 필드 값입니다. 

프로세스 struct thread_info구조체 preempt_count 필드가 0x00010001 이므로 현재 실행 중인 코드를 인터럽트 컨택스트입니다. 0x00010001와 HARDIRQ_OFFSET(0x10000) 를 AND 비트 연산한 결과가 1이기 때문입니다.

위 로그에서 “scheduling while atomic”란 메시지가 보입니다. 메시지를 그대로 풀면 “아토믹 도중에 스케줄링 중이다.”라고 볼 수 있습니다.

여기서 atomic이란 무슨 의미일까요? 커널에서는 다음과 같은 상황을 atomic이라고 말합니다.
   - 선점 스케줄링이 되지 않는 실행 단위(어셈블리 명령어) 
   - 어떤 코드나 루틴이 실행 도중 스케줄링을 수행하면 안되는 컨택스트

커널에서는 인터럽트 컨택스트도 실행 도중 스케줄링하면 안되는 컨택스트로 판단합니다. 즉 인터럽트 컨택스트는 atomic operation입니다. 따라서 경고 메시지를 출력하는 겁니다. (atomic operation은 커널 동기화 장에서 자세히 다룹니다.)

정리하면 인터럽트 컨택스트에서 스케줄링을 시도하니 커널은 이를 감지하고 커널 패닉을 유발하는 겁니다. 

임베디드 개발에서 다음과 같은 고민이 생겼습니다.
인터럽트 컨택스트에선 빨리 일을 해야 하는데, 어떻게 해야 이런 문제를 피할 수 있을까? 

이 과정에서 Bottom Half와 Top Half란 개념을 정립했으며 이 기준으로 인터럽트 후반부 처리 기법을 적용하기 시작했습니다. 


Top Half/Bottom Half 란 무엇일까?

이전 소절에선 인터럽트 컨택스트에서 인터럽트 핸들링을 빠른 시간에 마무리해야 한다고 설명을 드렸습니다. 또한 시간이 오래 걸리는 함수를 호출하면 시스템은 커널 패닉과 같이 시스템이 오동작 할 수 있다고 소개했습니다.

여기서 한 가지 의문이 생깁니다.
인터럽트가 발생하면 인터럽트 핸들러에서 처리할 일이 많을 때는 어떻게 해야 할까? 

이럴 때 해야 할 일을 2가지로 나누면 됩니다. 
빨리 처리해야 하는 일과 조금 있다가 처리해도 되는 일입니다. 임베디드 용어로 인터럽트가 발생 후 빨리 처리해야 하는 일은 Top Half, 조금 있다가 처리해도 되는 일은 Bottom Half라고 말합니다. 

인터럽트 핸들러가 하는 일은 Top Half라고 할 수 있습니다. Bottom Half는 인터럽트에 대한 처리를 프로세스 레벨에서 수행하는 방식입니다. 

리눅스 커널에서 Bottom Half을 어떤 방식으로 구현할까요? 
인터럽트 핸들러는 일하고 있던 프로세스를 멈춘 시점인 인터럽트 컨택스트에서 실행합니다. 급하게 처리해야 할 일은 인터럽트 컨택스트에서 처리하고 조금 후 실행해도 되는 일은 프로세스 레벨에서 처리합니다. 이를 위해 커널에서 대표적으로 다음과 같은 기법을 인터럽트 후반부 기법으로 지원합니다.
   - IRQ 스레드
   - Soft IRQ
   - 워크큐

인터럽트 컨택스트와 커널 쓰레드 레벨에서 어떤 코드를 동작할 때 어떤 차이점이 있을까요?
우선 인터럽트 컨택스트에서는 호출할 수 있는 함수가 제한돼 있습니다. 

리눅스 커널에서는 인터럽트 컨택스트에서 많은 일을 하는 함수를 호출할 때 경고 메시지를 출력하거나 커널 패닉을 유발해서 시스템 실행을 중단시킵니다. 예를 들어 스케줄링을 지원하는 뮤텍스나 schedule() 함수를 쓰면 커널은 강제로 커널 패닉을 유발합니다.

뮤텍스 함수는 스케줄링 동작과 연관돼 있습니다. 프로세스가 뮤텍스를 획득하려고 시도하는데 만약 다른 프로세스가 이미 뮤텍스를 획득했으면 휴면에 진입합니다.

그런데 인터럽트 컨택스트에 비해 커널 쓰레드에서는 커널이 제공하는 스케쥴링을 포함한 모든 함수를 쓸 수 있습니다. 그래서 시나리오에 따라 유연하게 코드를 설계할 수 있습니다.

예를 들어 인터럽트가 발생했을 때 이를 유저 공간에 알리고 싶을 경우가 있습니다. 안드로이드 디바이스 같은 경우에 터치를 입력하면 발생하는 인터럽트를 uevent로 유저 공간에 알릴 수 있습니다. 유저 공간에 uevent를 보내는 동작은 시간이 오래 걸리는 일입니다. 따라서 시간이 오래 걸리는 코드는 인터럽트 후반부에서 처리하도록 드라이버 구조를 잡아야 합니다.

인터럽트 후반부 처리 기법 종류 및 소개

이번 장에서는 리눅스 커널이 Bottom Half을 처리하는 대표적인 기법인 IRQ 스레드와 Soft IRQ 기법을 다룹니다. 워크큐는 워크큐를 다루는 장에서 살펴볼 예정입니다. 세 가지 기법 인터럽트 후반부 처리하는 방식이 조금씩 다릅니다. 하지만 인터럽트 핸들러에서 해야 할 일을 2 단계로 나눈다는 점은 같습니다. 

이 세 가지 기법의 특징이 뭔지 알아보겠습니다.
IRQ 스레드
인터럽트를 처리하는 전용 IRQ 스레드에서 인터럽트 후속 처리를 합니다. 만약 rasp란 24번 인터럽트가 있으면 “irq/24-rasp”란 IRQ 스레드가 24번 인터럽트 후반부를 전담해서 처리합니다.

Soft IRQ
인터럽트 핸들러 실행이 끝나면 바로 일을 시작합니다. 인터럽트 핸들러 바로 처리해야 할 일을 마무리한 후 인터럽트 후반부 처리를 Soft IRQ 컨택스트에서 실행합니다. Soft IRQ 서비스 핸들러 실행 도중 시간이 오래 걸리면 ksoftirqd란 프로세스를 깨우면 Soft IRQ 서비스를 종료합니다. 
ksoftirqd란 프로세스에서 나머지 인터럽트 후반부를 처리하는 구조입니다.  

워크큐
인터럽트 핸들러가 실행될 때 워크를 워크큐에 큐잉하고 프로세스 레벨의 워커 쓰레드에서 인터럽트 후반부 처리를 하는 방식입니다.

그러면 위에서 세 가지 기법 중 어떤 방식을 인터럽트 후반부 처리로 적용해야 할까요?
사실 인터럽트를 처리하는 드라이버를 작성할 때 어떤 기법을 쓸 지는 드라이버 담당자의 몫입니다. 인터럽트 발생 빈도와 이를 처리하는 시나리오에 따라 위 세 가지 기법을 적절히 조합해서 드라이버 코드를 작성해야 합니다. 이를 위해서 인터럽트를 시스템에서 처리하는 방식과 인터럽트가 얼마나 자주 발생하는지를 알아야 합니다. 

리눅스 디바이스 드라이버를 개발할 때 다양한 하드웨어 디바이스를 인터럽트로 제어합니다. 또한 인터럽트를 관리하는 방식도 리눅스 시스템 마다 다릅니다.

이런 다양한 상황에서 어떤 인터럽트 방식을 적용해야 할지를 Q/A로 정리하면 다음과 같습니다.
Q: 인터럽트가 1초에 수 백번 발생하는 디바이스의 경우 어떤 인터럽트 후반부 기법을 적용해야 할까?

A: IRQ 스레드 방식과 워크큐 방식은 그리 적합하지 않습니다. IRQ 스레드는 RT 프로세스로 구동됩니다. 인터럽트가 많이 발생하면 IRQ 스레드를 깨워야 하고 IRQ 스레드는 RT 프로세스로 구동하므로 다른 프로세스들이 선점 스케줄링을 할 수 없습니다. IRT 스레드 핸들러 실행 시간이 조금이라도 길어지면 다른 프로세스들이 실행을 못하고 대기해야 하므로 시스템 반응 속도가 느려질 수 있습니다.

만약 IRQ 스레드 방식을 적용해야 한다면 IRQ 스레드 핸들러 함수 실행 시간이 매우 짧아야 합니다. 예를 들면, IRQ 스레드 핸들러 함수에 printk() 함수와 같이 커널 로그를 출력하는 코드도 되도록 입력하지 말아야 합니다.

또한 워크큐를 실행하는 워커 스레드는 일반 프로세스로 프로세스 우선 순위가 높지 않습니다.
인터럽트 발생 횟수만큼 워크 핸들러가 실행을 못할 수 있습니다.

따라서 인터럽트가 자주 발생하는 디바이스는 Soft IRQ나 태스크릿 방식을 적용하는 것이 바람직합니다.

Q. 현재 개발 중인 시스템은 인터럽트 개수가 200개 정도된다. 어떤 방식을 적용하면 좋을까?

1초에 인터럽트가 수 백번 발생하는 경우를 제외하곤 IRQ 스레드 방식을 적용하면 별 문제가 없습니다. 그런데 인터럽트 개수만큼 IRQ 스레드를 생성하면 기본으로 프로세스를 관리할 때 필요한 태스크 디스크립터와 같은 메모리 공간을 써야 합니다. 만약 현재 개발 중인 시스템 RAM 용량이 8G 이상이면 별 문제가 되지 않을 것입니다.
인터럽트가 발생 빈도가 낮고 빠른 시간에 인터럽트 후반부를 처리하지 않아도 될 경우 워크큐 기법을 적용하는 것도 좋습니다.

어떤 인터럽트 후반부 방식을 적용할지 결정하는 것은 어려운 일입니다. 정답이 없기 때문입니다. 이런 상황에서 필요한 것이 최적화인 것 같습니다. 인터럽트 후반부 단계에서 인터럽트 처리를 최적화하도록 설계를 잘 하려면 먼저 커널이 인터럽트를 처리하는 세부 동작과 인터럽트 후반부 기법들의 세부 구현 방식을 잘 알고 있어야 합니다.

다음 절에서 인터럽트 후반부 기법 중 IRQ 스레드 방식을 살펴보겠습니다.
 


+ Recent posts